Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.866
Filtrar
1.
J Cell Mol Med ; 28(8): e18279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634203

RESUMO

The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Pirazinamida/química , Pirazinamida/metabolismo , Pirazinamida/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Tuberculose/microbiologia , Mutação , Testes de Sensibilidade Microbiana
2.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542939

RESUMO

The emergence of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis (M. tuberculosis) has become a major medical problem. S-adenosyl-L-homocysteine hydrolase (MtSAHH) was selected as the target protein for the identification of novel anti-TB drugs. Dual hierarchical in silico Structure-Based Drug Screening was performed using a 3D compound structure library (with over 150 thousand synthetic chemicals) to identify compounds that bind to MtSAHH's active site. In vitro experiments were conducted to verify whether the nine compounds selected as new drug candidates exhibited growth-inhibitory effects against mycobacteria. Eight of the nine compounds that were predicted by dual hierarchical screening showed growth-inhibitory effects against Mycobacterium smegmatis (M. smegmatis), a model organism for M. tuberculosis. Compound 7 showed the strongest antibacterial activity, with an IC50 value of 30.2 µM. Compound 7 did not inhibit the growth of Gram-negative bacteria or exert toxic effects on human cells. Molecular dynamics simulations of 40 ns using the MtSAHH-Compound 7 complex structure suggested that Compound 7 interacts stably with the MtSAHH active site. These in silico and in vitro results suggested that Compound 7 is a promising lead compound for the development of new anti-TB drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/química , Avaliação Pré-Clínica de Medicamentos , Tuberculose/microbiologia , Homocisteína/farmacologia , Hidrolases/farmacologia , Simulação de Acoplamento Molecular
3.
Sci Rep ; 14(1): 6794, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514663

RESUMO

Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.


Assuntos
Produtos Biológicos , Mycobacteriaceae , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , RNA Ribossômico 16S , Antibacterianos/farmacologia , Mycobacterium smegmatis/genética , Produtos Biológicos/farmacologia , Misturas Complexas , Antituberculosos/farmacologia , Antituberculosos/química
4.
Int J Pharm ; 654: 123984, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461874

RESUMO

Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 µm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.


Assuntos
Nitroimidazóis , Pirazinamida , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Pirazinamida/farmacologia , Pirazinamida/química , Moxifloxacina/farmacologia , Moxifloxacina/química , Pós/química , Leucina/química , Aerossóis/química , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Administração por Inalação , Inaladores de Pó Seco/métodos , Tamanho da Partícula
5.
Nat Commun ; 15(1): 1615, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388565

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to persist in the host complicates and prolongs tuberculosis (TB) patient chemotherapy. Here we demonstrate that a neglected two-component system (TCS) of Mtb, TcrXY, is an autoregulated acid-sensing TCS that controls a functionally diverse 70-gene regulon required for bacterial persistence. Characterisation of two representatives of this regulon, Rv3706c and Rv3705A, implicate these genes as key determinants for the survival of Mtb in vivo by serving as important effectors to mitigate redox stress at acidic pH. We show that genetic silencing of the response regulator tcrX using CRISPR interference attenuates the persistence of Mtb during chronic mouse infection and improves treatment with the two front-line anti-TB drugs, rifampicin and isoniazid. We propose that targeting TcrXY signal transduction blocks the ability of Mtb to sense and respond to acid stress, resulting in a disordered program of persistence to render the organism vulnerable to existing TB chemotherapy.


Assuntos
Genes Bacterianos , Mycobacterium tuberculosis , Animais , Humanos , Camundongos , Antituberculosos/química , Genes Bacterianos/fisiologia , Isoniazida , Mycobacterium tuberculosis/genética , Infecção Persistente , Rifampina
6.
Microbiol Spectr ; 12(3): e0372323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315026

RESUMO

The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE: The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.


Assuntos
Mycobacterium tuberculosis , Oxirredutases , Tuberculose , Humanos , Antituberculosos/química , Ensaios de Triagem em Larga Escala , Desenho de Fármacos , Tuberculose/tratamento farmacológico
7.
Future Med Chem ; 16(5): 453-467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38314562

RESUMO

Aim: To discover novel anti-Mycobacterium tuberculosis (Mtb) drugs, 19 compounds were synthesized; their anti-Mtb effects were evaluated and mechanisms of action were preliminarily explored. Materials & methods: The compounds were synthesized and their anti-Mtb activity was elucidated using resazurin microtiter assays. The plausible target of the potential compound was investigated by microimaging techniques, gas chromatography-mass spectrometry analysis and molecular docking. Results: 19 compounds inhibited Mtb growth with minimum inhibitory concentrations ranging from 1 to 32 µg/ml. Compounds 1-17 showed inhibition of Mtb KatG enzyme. Compound 19, the most potent, might be an inhibitor of Pks13 polyketide synthase. Conclusion: This study suggests that 2-((6-fluoropyridin-3-yl)methylene) hydrazine-1-carbothioamide (19) is a potential anti-Mtb lead compound with a novel mechanism of action.


Globally, more than 1.6 million people die of tuberculosis (TB) and about 11 million new cases occur each year. The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has made it difficult to effectively treat TB. Therefore, 19 drugs were synthesized and assayed in the laboratory to verify whether they could inhibit the growth of Mtb. All compounds exhibit anti-Mtb effects at relatively low concentrations. Among them, compound 19 had a strong anti-Mtb effect, and its bactericidal effect on Mtb even exceeded that of isoniazid. In addition, it was preliminarily determined that compound 19 is a novel inhibitor of a key enzyme in the biosynthesis of Mtb cell walls. These findings demonstrate a potential new treatment option for TB but more research is needed to confirm the safety of these drugs.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Antituberculosos/química , Simulação de Acoplamento Molecular , Bases de Schiff/farmacologia , Testes de Sensibilidade Microbiana
8.
ACS Infect Dis ; 10(2): 513-526, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38238154

RESUMO

Identification of structurally unique chemical entities targeting unexplored bacterial targets is a prerequisite to combat increasing drug resistance against Mycobacterium tuberculosis. This study employed a whole-cell screening approach as an initial filter to scrutinize a 10,000-compound chemical library, resulting in the discovery of seven potent compounds with MIC values ranging from 1.56 to 25 µM. These compounds were categorized into four distinct chemical groups. Remarkably, they demonstrated efficacy against drug-resistant and nonreplicating tuberculosis strains, highlighting their effectiveness across different infection states. With a favorable selectivity index (>10), these compounds showed a safe therapeutic range and exhibited potency in an intracellular model of Mtb infection, mimicking the in vivo setup. Combining these identified hits with established anti-TB drugs revealed additive effects with rifampicin, isoniazid, and bedaquiline. Notably, IIIM-IDD-01 exhibited synergy with isoniazid and bedaquiline, likely due to their complementary mechanisms of targeting Mtb. Most potent hits, IIIM-IDD-01 and IIIM-IDD-02, displayed time- and concentration-dependent killing of Mtb. Mechanistic insights were sought through SEM and docking studies, although comprehensive evaluation is ongoing to unravel the hits' specific targets and modes of action. The hits demonstrated favorable pharmacokinetic properties (ADME-Tox) and showed a low risk of adverse effects, along with a predicted high level of oral bioavailability. These promising hits can serve as an initial basis for subsequent medicinal chemistry endeavors aimed at developing a new series of anti-TB agents. Moreover, the study affirms the significance of high-throughput in vitro assays for the TB drug discovery. It also emphasizes the necessity of targeting diverse TB strains to address the heterogeneity of tuberculosis bacteria.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/química , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia
9.
Bioorg Chem ; 144: 107138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262087

RESUMO

Tuberculosis (TB) is a global issue that poses a significant economic burden as a result of the ongoing emergence of drug-resistant strains. The urgent requirement for the development of novel antitubercular drugs can be addressed by targeting specific enzymes. One such enzyme, Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein (enoyl-ACP) reductase (InhA), plays a crucial role in the survival of the MTB bacterium. In this research study, a series of hybrid compounds combining quinolone and isatin were synthesized and assessed for their effectiveness against MTB, as well as their ability to inhibit the activity of the InhA enzyme in this bacterium. Among the compounds tested, 7a and 5g exhibited the most potent inhibitory activity against MTB, with minimum inhibitory concentration (MIC) values of 55 and 62.5 µg/mL, respectively. These compounds were further evaluated for their inhibitory effects on InhA and demonstrated significant activity compared to the reference drug Isoniazid (INH), with IC50 values of 0.35 ± 0.01 and 1.56 ± 0.06 µM, respectively. Molecular docking studies investigated the interactions between compounds 7a and 5g and the target enzyme, revealing hydrophobic contacts with important amino acid residues in the active site. To further confirm the stability of the complexes formed by 5g and 7a with the target enzyme, molecular dynamic simulations were employed, which demonstrated that both compounds 7a and 5g undergo minor structural changes and remain nearly stable throughout the simulated process, as assessed through RMSD, RMSF, and Rg values.


Assuntos
Isatina , Mycobacterium tuberculosis , Quinolinas , Humanos , Proteína de Transporte de Acila/farmacologia , Isatina/farmacologia , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Testes de Sensibilidade Microbiana , Quinolinas/farmacologia , Proteínas de Bactérias/metabolismo
10.
SAR QSAR Environ Res ; 35(1): 53-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282553

RESUMO

Novel antimycobacterial compounds are needed to expand the existing toolbox of therapeutic agents, which sometimes fail to be effective. In our study we extracted, filtered, and aggregated the diverse data on antimycobacterial activity of chemical compounds from the ChEMBL database version 24.1. These training sets were used to create the classification and regression models with PASS and GUSAR software. The IOC chemical library consisting of approximately 200,000 chemical compounds was screened using these (Q)SAR models to select novel compounds potentially having antimycobacterial activity. The QikProp tool (Schrödinger) was used to predict ADME properties and find compounds with acceptable ADME profiles. As a result, 20 chemical compounds were selected for further biological evaluation, of which 13 were the Schiff bases of isoniazid. To diversify the set of selected compounds we applied substructure filtering and selected an additional 10 compounds, none of which were Schiff bases of isoniazid. Thirty compounds selected using virtual screening were biologically evaluated in a REMA assay against the M. tuberculosis strain H37Rv. Twelve compounds demonstrated MIC below 20 µM (ranging from 2.17 to 16.67 µM) and 18 compounds demonstrated substantially higher MIC values. The discovered antimycobacterial agents represent different chemical classes.


Assuntos
Mycobacterium tuberculosis , Isoniazida/farmacologia , Bases de Schiff/farmacologia , Bases de Schiff/química , Ligantes , Relação Quantitativa Estrutura-Atividade , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Testes de Sensibilidade Microbiana
11.
J Biomol Struct Dyn ; 42(4): 1924-1931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37154535

RESUMO

A major obstacle in the treatment of tuberculosis (TB) is to combat the emerging resistant strains of its causing agent i.e. Mycobacterium tuberculosis (MTb). The emergence of multidrug-resistant and extensively drug-resistant -TB strains raise a requirement of new potential anti-tubercular compounds. In this direction, different plant parts of Morus alba were tested against MTb and found to be active with a minimum inhibitory concentration ranging between 125 µg/ml to 31.5 µg/ml. Further to identify the phytochompounds having anti-mycobacterium activity, phytocompounds of the plant were docked against the five MTb proteins (PDB ID: 3HEM, 4OTK, 2QO0, 2AQ1 and 6MNA). Among twenty-two tested phytocompounds, four phytocompounds with effective binding energy (kcal/mol): Petunidin-3-rutinoside (3HEM: -8.2, 4OTK: -6.9, 2QO0: -9.0, 2AQ1: -8.3 and 6MNA:-7.8), Quercetin-3'-glucoside (3HEM:-6.7, 4OTK:-7.6, 2QO0:-7.6, 2AQ1:7.6 and 6MNA:-6.4), Rutin (3HEM:-7.8, 4OTK:-7.5, 2QO0:-9.1, 2AQ1:9.3 and 6MNA:-6.9) and Isoquercitrin (3HEM:-7.3, 4OTK:-6.6, 2QO0:-7.7, 2AQ1:8.3 and 6MNA:-6.6) shows promising activity against all the five target proteins. Further molecular dynamics studies of Petunidin-3-rutinoside with three target proteins 3HEM, 2AQ1 and 2QO0 resulted with low values of average RMSD (3.723 Å, 3.261 Å, and 2.497 Å, respectively) show that the complexes have better conformational stability. The wet lab validation of the current study will pave the new dimensions for the cure of TB patients.Communicated by Ramaswamy H. Sarma.


Assuntos
Morus , Mycobacterium tuberculosis , Ácidos Naftalenoacéticos , Tuberculose , Humanos , Simulação de Dinâmica Molecular , Antituberculosos/química , Tuberculose/microbiologia , Simulação de Acoplamento Molecular
12.
Eur J Med Chem ; 264: 115976, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039794

RESUMO

A series of novel benzothiozinone (BTZ) derivatives were designed, prepared and evaluated for antituberculosis activity. Specifically, the BTZ pharmacophore is retained and the previous heterocyclic ring linker is replaced by alkynyl or vinyl linker, the resulting compounds displayed about 5-fold improved antimycobacterial activity. We further revealed that the linker attached tail group affects the compound metabolic stability, potency and other drug like properties. This work led to the discovery of two compounds (A1 and A11) with acceptable low MICs and improved metabolic stability. The representative compound A11 demonstrated bactericidal efficacy in an acute TB infection mouse model.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Camundongos , Animais , Antituberculosos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
13.
Arch Pharm (Weinheim) ; 357(2): e2300560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032154

RESUMO

Tuberculosis (TB) disease, caused by Mycobacterium tuberculosis (Mtb) is the leading cause of death among people with human immunodeficiency virus (HIV) infection. No dual-target drug is currently being used to simultaneously treat both infections. This work aimed to obtain new multitarget HIV-TB agents, with the goal of optimizing treatments and preventing this coinfection. These compounds incorporate the structural features of azaaurones as anti-Mtb and zidovudine (AZT) as the antiretroviral moiety. The azaaurone scaffold displayed submicromolar activities against Mtb, and AZT is a potent antiretroviral drug. Six derivatives were synthetically generated, and five were evaluated against both infective agents. Evaluations of anti-HIV activity were carried out in HIV-1-infected MT-4 cells and on endogenous HIV-1 reverse transcriptase (RT) activity. The H37Rv strain was used for anti-Mtb assessments. Most compounds displayed potent antitubercular and moderate anti-HIV activity. (E)-12 exhibited a promising multitarget profile with an MIC90 of 2.82 µM and an IC50 of 1.98 µM in HIV-1-infected T lymphocyte cells, with an 84% inhibition of RT activity. Therefore, (E)-12 could be the first promising compound from a family of multitarget agents used to treat HIV-TB coinfection. In addition, the compound could offer a prototype for the development of new strategies in scientific research to treat this global health issue.


Assuntos
Benzofuranos , Coinfecção , Infecções por HIV , HIV-1 , Mycobacterium tuberculosis , Tuberculose , Humanos , Coinfecção/tratamento farmacológico , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/química , Infecções por HIV/tratamento farmacológico , Antirretrovirais/farmacologia
14.
Comput Biol Chem ; 108: 107991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086160

RESUMO

Several factors are associated with the emergence of drug resistance mechanisms, such as impermeable cell walls, gene mutations, and drug efflux systems. Consequently, bacteria acquire resistance, leading to a decrease in drug efficacy. A new and innovative strategy is required to combat drug resistance in tuberculosis (TB) effectively. Therefore, targeting the mycolic acid biosynthesis pathway, which is involved in synthesising mycolic acids (MAs), essential structural components responsible for mycobacterial pathogenicity, has garnered interest in TB research and the concept of drug resistance. In this context, InhA, which plays a crucial role in the fatty acid synthase-II (FAS-II) system of the MA biosynthetic pathway, was selected as a druggable target for screening investigation. To identify potential lead molecules against InhA, diverse marine natural products (MNPs) were collected from the comprehensive marine natural products database (CMNPD). Virtual screening studies aided in selecting potential lead molecules that best fit within the substrate-binding pocket (SBP) of InhA, forming crucial hydrogen bond interaction with the catalytic residue Tyr158. Three MNPs, CMNPD30814, CMNPD1702, and CMNPD27355, were chosen as prospective alternative molecules due to their favorable pharmacokinetic properties and lack of toxicity according to ProTox-II predictions. Additionally, improved reactivity of the MNPs was observed in the results of density functional theory (DFT) studies. Furthermore, comparative molecular dynamics simulation (MDS), principal component (PC)-based free energy landscape (FEL) analysis, and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) were employed to show enhanced structural stability, increased H-bond potential, and high binding affinity toward the target InhA. Moreover, the hot spot residues that contributed to the high binding energy profile and anchored the stability of the complexes were revealed with their individual interaction energy. The computational insights from this study provide potential avenues to combat TB through the multifaceted mode of action of these marine lead molecules, which can be further explored in future experimental investigations.


Assuntos
Mycobacterium tuberculosis , Antituberculosos/farmacologia , Antituberculosos/química , Estudos Prospectivos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Proteínas de Bactérias/química
15.
Bioorg Chem ; 143: 107009, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070474

RESUMO

Joining the global effort to eradicate tuberculosis, one of the deadliest infectious killers in the world, we disclose in this paper the design and synthesis of new indolinone-tethered benzothiophene hybrids 6a-i and 7a-i as potential anti-tubercular agents. The MICs were determined in vitro for the synthesized compounds against the sensitive M. tuberculosis strain ATCC 25177. Potent compounds 6b, 6d, 6f, 6h, 7a, 7b, 7d, 7f, 7h and 7i were furtherly assessed versus resistant MDR-TB and XDR-TB. Structure activity relationship investigation of the synthesized compounds was illustrated, accordingly. Superlative potency was unveiled for compound 6h (MIC = 0.48, 1.95 and 7.81 µg/mL for ATCC 25177 sensitive TB strain, resistant MDR-TB and XDR-TB, respectively). Moreover, validated in vivo pharmacokinetic study was performed for the most potent derivative 6h revealing superior pharmacokinetic profile over the reference drug. For further exploration of the anti-tubercular mechanism of action, molecular docking was carried out for the former compound in DprE1 active site as one of the important biological targets of TB. The binding mode and the docking score uncovered exceptional binding when compared to the co-crystallized ligand suggesting that it maybe the underlying target for its outstanding anti-tubercular potency.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tiofenos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/química , Simulação de Acoplamento Molecular , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
16.
Bioorg Chem ; 143: 107032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128204

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a worldwide scourge with more than 10 million people affected yearly. Among the proteins essential for the survival of Mtb, InhA has been and is still clinically validated as a therapeutic target. A new family of direct diaryl ether inhibitors, not requiring prior activation by the catalase peroxidase enzyme KatG, has been designed with the ambition of fully occupying the InhA substrate-binding site. Thus, eleven compounds, featuring three pharmacophores within the same molecule, were synthesized. One of them, 5-(((4-(2-hydroxyphenoxy)benzyl)(octyl)amino)methyl)-2-phenoxyphenol (compound 21), showed good inhibitory activity against InhA with IC50 of 0.70 µM. The crystal structure of compound 21 in complex with InhA/NAD+ showed how the molecule fills the substrate-binding site as well as the minor portal of InhA. This study represents a further step towards the design of new inhibitors of InhA.


Assuntos
Antituberculosos , Imidazóis , Mycobacterium tuberculosis , Sulfonamidas , Tiofenos , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Éter , Éteres , Sítios de Ligação , Etil-Éteres , Proteínas de Bactérias/metabolismo
17.
Cell Chem Biol ; 31(4): 683-698.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38151019

RESUMO

Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Trifosfato de Adenosina , Inibidores Enzimáticos/farmacologia , Succinatos
18.
J Med Chem ; 67(1): 81-109, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157261

RESUMO

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.


Assuntos
Mycobacterium tuberculosis , Animais , Oxidiazóis/farmacologia , Oxidiazóis/química , Tetrazóis/farmacologia , Tetrazóis/química , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Nitrorredutases , Mamíferos
19.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138972

RESUMO

Despite the recent progress in the diagnosis of tuberculosis (TB), the chemotherapeutic management of TB continues to be challenging. Mycobacterium tuberculosis (Mtb), the etiological agent of TB, is classified as the 13th leading cause of death globally. In addition, 450,000 people were reported to develop multi-drug-resistant TB globally. The current project focuses on targeting methionine aminopeptidase (MetAP), an essential protein for the viability of Mtb. MetAP is a metalloprotease that catalyzes the excision of the N-terminal methionine (NME) during protein synthesis, allowing the enzyme to be an auspicious target for the development of novel therapeutic agents for the treatment of TB. Mtb possesses two MetAP1 isoforms, MtMetAP1a and MtMetAP1c, which are vital for Mtb viability and, hence, a promising chemotherapeutic target for Mtb therapy. In this study, we cloned and overexpressed recombinant MtMetAP1c. We investigated the in vitro inhibitory effect of the novel MetAP inhibitor, OJT008, on the cobalt ion- and nickel ion-activated MtMetAP1c, and the mechanism of action was elucidated through an in silico approach. The compound's potency against replicating and multi-drug-resistant (MDR) Mtb strains was also investigated. The induction of the overexpressed recombinant MtMetAP1c was optimized at 8 h with a final concentration of 1 mM Isopropyl ß-D-1-thiogalactopyranoside. The average yield from 1 L of Escherichia coli culture for MtMetAP1c was 4.65 mg. A preliminary MtMetAP1c metal dependency screen showed optimum activation with nickel and cobalt ions occurred at 100 µM. The half-maximal inhibitory concentration (IC50) values of OJT008 against MtMetAP1c activated with CoCl2 and NiCl2 were 11 µM and 40 µM, respectively. The in silico study showed OJT008 strongly binds to both metal-activated MtMetAP1c, as evidenced by strong molecular interactions and a higher binding score, thereby corroborating our result. This in silico study validated the pharmacophore's metal specificity. The potency of OJT008 against both active and MDR Mtb was <0.063 µg/mL. Our study reports OJT008 as an inhibitor of MtMetAP1c, which is potent at low micromolar concentrations against both active susceptible and MDR Mtb. These results suggest OJT008 is a potential lead compound for the development of novel small molecules for the therapeutic management of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Níquel/farmacologia , Aminopeptidases/genética , Aminopeptidases/química , Tuberculose/microbiologia , Metionil Aminopeptidases , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Metais/farmacologia , Cobalto/farmacologia , Antituberculosos/química
20.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138601

RESUMO

The uncontrolled spread of drug-resistant tuberculosis (DR-TB) clinical cases necessitates the urgent discovery of newer chemotypes with novel mechanisms of action. Here, we report the chemical synthesis of rationally designed novel transition-state analogues (TSAs) by targeting the cyclization (Cy) domain of phenyloxazoline synthase (MbtB), a key enzyme of the conditionally essential siderophore biosynthesis pathway. Following bio-assay-guided evaluation of TSA analogues preferentially in iron-deprived and iron-rich media to understand target preferentiality against a panel of pathogenic and non-pathogenic mycobacteria strains, we identified a hit, i.e., TSA-5. Molecular docking, dynamics, and MMPBSA calculations enabled us to comprehend TSA-5's stable binding at the active site pocket of MbtB_Cy and the results imply that the MbtB_Cy binding pocket has a strong affinity for electron-withdrawing functional groups and contributes to stable polar interactions between enzyme and ligand. Furthermore, enhanced intracellular killing efficacy (8 µg/mL) of TSA-5 against Mycobacterium aurum in infected macrophages is noted in comparison to moderate in vitro antimycobacterial efficacy (64 µg/mL) against M. aurum. TSA-5 also demonstrates whole-cell efflux pump inhibitory activity against Mycobacterium smegmatis. Identification of TSA-5 by focusing on the modular MbtB_Cy domain paves the way for accelerating novel anti-TB antibiotic discoveries.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Simulação de Acoplamento Molecular , Ferro/metabolismo , Mycobacterium smegmatis , Antituberculosos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...